AN M-SPACE WHICH IS NOT ISOMORPHIC TO A C(K) SPACE

BY Y. BENYAMINI[†]

ABSTRACT

We give a new example of an $L^1(\mu)$ predual which is not isomorphic to a C(K) space. The space constructed here is a non-separable M-space. By a previous theorem of the author, the separable M-spaces are isomorphic to C(K) spaces.

While Banach spaces whose duals are $L^1(\mu)$ spaces share many of the properties of C(K) spaces, an example was constructed in [2] of an $L^1(\mu)$ predual which is not isomorphic to a C(K) space. It was later proved in [1] that a more restricted class of $L^1(\mu)$ preduals, namely, the separable G-spaces (and in particular separable M-spaces), are isomorphic to C(K) spaces. (Recall that a subspace X of a C(K) space is called an M-space, if there are points k_{α} , $h_{\alpha} \in K$ and non-negative numbers τ_{α} , such that $X = \{f \in C(K): f(k_{\alpha}) = \tau_{\alpha}f(h_{\alpha}) \text{ for all } \alpha\}$. By a famous result of Kakutani [4], the M-spaces are exactly the closed sublattices of C(K) spaces.) In this paper we show that the separability condition in [1] cannot be dropped. We construct a non-separable M-space which is not isomorphic to a complemented subspace of any C(K) space. The example here is simpler than the one in [2], the latter is however a separable space, and in fact a predual of l_1 .

For a Banach space X, let $\lambda(X) = \inf \|T\| \|T^{-1}\| \|P\|$, where the inf is taken over all isomorphisms T of X into a C(K) space, and all possible projections P from C(K) onto TX. Denote by B_{X^*} the unit ball of X^* in its w^* -topology, and consider X canonically as a subspace of $C(B_{X^*})$. By the lemma in [2], $\lambda(X) = \inf \|P\|$, where the inf is taken over all projections P from $C(B_{X^*})$ onto X.

We now describe the example. Let S be the disjoint union of βN and $\beta N - N$ (where βN is the Stone-Cech compactification of the integers.) Denote by K the

^{&#}x27; This research was partially supported by NSF Grant MPS 74-2449. Received August 2, 1976

copy of $\beta N - N$ in βN , and by H the disjoint copy of $\beta N - N$, and let $\varphi: K \to H$ be the map that identifies K and H. For a fixed number $0 < \tau < 1$ let $X_{\tau} = \{ f \in C(S): f(k) = \tau f(\varphi(k)) \text{ for all } k \in K \}$. X_{τ} is an M space, and we shall show that $\lambda(X_{\tau}) \ge 1/\tau$. (In fact X_{τ} is $1/\tau$ -isomorphic to $C(\beta N)$ and is thus a $P_{1/\tau}$ space. Hence $\lambda(X_{\tau}) = 1/\tau$).

The space $X = (\Sigma_n \bigoplus X_{1/n})_{c_0}$ is an M-space, and $\lambda(X) \ge \lambda(X_{1/n}) \ge n$ for all n, i.e. $\lambda(X) = \infty$ and X is not complemented in any C(K) space.

A standard computation gives that X_{τ}^* can be identified with the measures μ on S that vanish on K, i.e., if we denote by δ_n the point mass at n, then $\mu = \sum \mu(n)\delta_n + \nu$, where ν is supported on H.

We start with two lemmas.

LEMMA 1. Let ν be a finite measure on some measure space, $\delta > 0$, l, a natural member and $\{A_i\}_{i=1}^N$ measurable sets such that every l+1 different A_i 's have empty intersection. If $N > \|\nu\| |l/\delta$, there is a $1 \le j \le N$ with $|\nu| |A_i| < \delta$.

PROOF. Let $\{B_k\}$ be the atoms of the field generated by the A_i 's. By the condition, each B_k is contained in at most l A_i 's. Thus

$$\sum_{j=1}^{N} |\nu| (A_j) \leq l \sum_{k} |\nu| (B_k) \leq l \|\nu\|$$

and since $N > ||\nu|| l/\delta$, there must be a j with $|\nu|(A_i) < \delta$.

LEMMA 2. Let ν_n be measures on $B_{X_{\tau}}$, with $\sup \|\nu_n\| = C < \infty$, and $\varepsilon > 0$. Then there exists an infinite subset J of N, such that for all $j \in J$,

$$|\nu_{j}|\{\mu \in B_{X}; \Sigma_{n \in J} |\mu(n)| > \varepsilon\} < \varepsilon.$$

PROOF. Since the ν_n are finite measures, we can find for each n a number m(n) > n such that $|\nu_n| \{ \mu \in B_{X_{\tau}} : \sum_{k > m(n)} |\mu(k)| > \varepsilon/2 \} < \varepsilon/2$.

Let $A_n = \{ \mu \in B_X; |\mu(n)| > \varepsilon/4 \}$. Since each $\mu \in B_X$; has norm at most one, every collection of more then $4/\varepsilon$ of the A_n 's has empty intersection. By Lemma 1 we can find for each ν_k , a $j \le 16C/\varepsilon^2$ such that $|\nu_k|(A_j) \le \varepsilon/4$. Thus we can find $j_1 \le 16C/\varepsilon^2$ and an infinite set J_1 satisfying

- (a) $|v_k|(A_{j_1}) \le \varepsilon/4$ for all $k \in J_1$,
- (b) $k > m(j_1)$ for all $k \in J_1$.

Now let $B_n = \{ \mu \in B_X : |\mu(n)| > \varepsilon/8 \}$. By the same argument as before, there is a $j_2 \in J_1$ and an infinite set $J_2 \subset J_1$ with

- (a) $|\nu_k|(B_{i_2}) \le \varepsilon/8$ for all $k \in J_2$,
- (b) $k > m(j_2)$ for all $k \in J_2$.

Continuing similarly we get for each n a j_{n+1} in J_n and an infinite subset $J_{n+1} \subset J_n$ with

- (a) $|\nu_k| \{ \mu \in B_{X_{\tau}^*} : |\mu(j_{n+1})| > \varepsilon/2^{n+2} \} \le \varepsilon/2^{n+2}$, for all $k \in J_{n+1}$,
- (b) $k > m(j_{n+1})$ for all $k \in J_{n+1}$.

We now take $J = \{j_1, j_2, j_3, \dots\}$. Then if $j \in J$ we have

$$\left\{\mu \in B_X; : \sum_{\substack{n \in J \\ n \neq j}} |\mu(n)| > \varepsilon\right\} \subset \left\{\mu : \sum_{\substack{n > m(j) \\ n \neq j}} |\mu(n)| > \varepsilon/2\right\}$$

$$\bigcup \bigcup_{i < j} \{\mu : |\mu(j_i)| > \varepsilon/2^{i+1}\}$$

and thus

$$|\nu_{i}|\left\{\mu: \sum_{\substack{n \in J \\ n \neq i}} |\mu(n)| > \varepsilon\right\} \leq \varepsilon/2 + \sum_{i < j} \varepsilon/2^{i+1} < \varepsilon.$$

PROOF THAT $\lambda(X_{\tau}) \ge 1/\tau$. We start with the remark that if x^* is any w^* -limit point of $\{\delta_n\}$, then, since every $f \in X_{\tau}$ is continuous on S, x^* is a point evaluation at some point $k \in K$. Thus $x^*(f) = f(k) = \tau f(\varphi(k))$ for all $f \in X_{\tau}$, and in particular, $||x^*|| = \tau$.

Now fix a projection P from $C(B_X;)$ onto X_τ . Given any number 2 > t > 1, we shall construct an infinite subset M of N, and a function Ψ in $C(B_X;)$ with $\|\Psi\| \le t$, such that $\delta_m(P\Psi) \ge 1/t$ for all $m \in M$. If x^* is any w^* -limit point of $\{\delta_m\}_{m \in M}$, then also $x^*(P\Psi) \ge 1/t$, but by the remark above $\|x^*\| = \tau$ and hence $1/t \le \|\Psi\| \|x^*\| \|P\| \le t\tau \|P\|$, or $\|P\| \ge 1/t^2\tau$. Since t > 1 was arbitrary, we get $\|P\| \ge 1/\tau$.

Fix $\varepsilon > 0$ such that $1 + \varepsilon (1 + 1/\tau) \le t$ and $1 - ((1 + 1/\tau) || P || + 3)\varepsilon \ge 1/t$, and let J be the infinite set obtained by applying Lemma 2 for this ε and $\nu_n = P^*\delta_n$. (We identify $P^*\delta_n \in C(B_X;)^*$ with Baire measures on B_X ; by Riesz's theorem).

For $j \in J$ denote by

$$G_j = \left\{ \mu \in B_X; \sum_{\substack{n \in J \\ n \neq j}} |\mu(n)| \leq \varepsilon \right\}.$$

For a subset L of N, let $L_H = \varphi(\bar{L} \setminus L)$, i.e., L_H is the copy in H of the limit points of L in βN . Let \mathcal{M} be an uncountable collection of infinite subsets of J such that any pair of them has at most a finite intersection. For each $M \in \mathcal{M}$, the set

$$G(M) = \{ \mu \in B_X; |\mu(M_H)| > \varepsilon \} = \bigcup_{i} \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{ \mu : |\int g_n d\mu | > \varepsilon + 1/i \}$$

is a Baire subset of $B_{X_{\tau}}$, where $g_n \in X_{\tau}$ is given by

$$g(s) = \begin{cases} 1 & s \in M_H \\ \tau & s \in \overline{M \setminus \{1, 2, \dots, n\}} \\ 0 & \text{otherwise} \end{cases}$$

Since $M_H \cap L_H = \emptyset$ for distinct M and L in \mathcal{M} , every collection of more then $1/\varepsilon$ of the G(M)'s have empty intersection. Since \mathcal{M} is uncountable, we get by Lemma 1 that there is an $M \in \mathcal{M}$ such that $|\nu_n|(G(M)) = 0$ for all $n \in N$. This is the set M we choose.

To define Ψ , let $g \in X_r$ be defined by

$$g(s) \begin{cases} 1 & s \in \overline{M} \\ = 1/\tau & s \in M_H \\ 0 & \text{otherwise} \end{cases}$$

As an element in X_r , g is also in $C(B_x)$ and we define for $\mu \in B_x$;

$$\Psi(\mu) = \begin{cases} g(\mu) & \text{if } |g(\mu)| \le t \\ t & \text{if } g(\mu) \ge t \\ -t & \text{if } g(\mu) \le -t. \end{cases}$$

Let us first compute $g(\mu)$ for $\mu \in G_m \backslash G(M)$, $m \in M$.

By the definition of g, $g(\mu) = \sum_{n \in M} \mu(n) + 1/\tau \mu(M_H)$. But $\mu \not\in G(M)$ implies that $|\mu(M_H)| \le \varepsilon$, also $\mu \in G_m$ implies that $\sum_{n \in M} |\mu(n)| \le \varepsilon$ (recall that $M \subset J$). Hence $g(\mu) = \mu(m) + \eta(\mu)$, where $|\eta(\mu)| \le \varepsilon + \varepsilon/\tau$. In particular if $\mu \in G_m \setminus G(M)$, $|g(\mu)| \le 1 + \varepsilon(1 + 1/\tau) \le t$ and $\Psi(\mu) = g(\mu)$.

Let e_m be the unique function in X_τ such that $e_m(n) = 0$ if $n \neq m$, $e_m(m) = 1$. Since $e_m \in X_\tau$, $Pe_m = e_m$ and thus

$$\delta_m(P\Psi) \ge \delta_{m_0}(e_m) - |\delta_m(e_m - P\Psi)| = 1 - |P^*\delta_m(e_m - \Psi)|.$$

We now estimate $P^*\delta_m(e_m - \Psi)$ for $m \in M$:

$$\left| \int (\Psi - e_m) dP^* \delta_m \right| \leq \left| \int_{G_m \backslash G(M)} (\Psi - e_m) dP^* \delta_m \right| + \left| \int_{B_{X_i^*} \backslash (G_m \backslash G(M))} (\Psi - e_m) dP^* \delta_m \right|.$$

By the choice of M, $|P^*\delta_m|(G(M))=0$, and by the choice of J

 $|P^*\delta_m|(B_X; G_m) \le \varepsilon$. Since also $||\Psi - e_m|| \le t + 1 \le 3$, the second integral is bounded by 3ε .

On $G_m \setminus G(M)$ we have already computed that $\Psi(\mu) = g(\mu) = \mu(m) + \eta(\mu) = e_m(\mu) + \eta(\mu)$ where $|\eta(\mu)| \le \varepsilon (1 + 1/\tau)$, and thus the first integral is bounded by $\varepsilon (1 + 1/\tau) ||P||$.

Hence $\delta_m(P\Psi) \ge 1 - (1 + 1/\tau)\varepsilon ||P|| - 3\varepsilon \ge 1/t$ by the choice of ε . This completes the proof.

REMARK. Notice that X_{τ}^* contains a τ -norming sequence, namely, the functionals $\{\delta_n\}$. Moreover, τ is the best norming constant of a countable subset of X_{τ}^* . Indeed, if $\{\mu_n\} \subset B_{X_{\tau}^*}$, we can find, by using an uncountable collection of finitely intersecting infinite subsets of N, a subset M with $|\mu_n|(M_H) = 0$ for all n. Let $g \in X_{\tau}$ be defined by

$$g(s) = \begin{cases} 1 & s \in \bar{M} \\ 1/\tau & s \in M_H \\ 0 & \text{otherwise.} \end{cases}$$

Then $||g|| = 1/\tau$, however, for each n, by the choice of M and the definition of g

$$\left|\int_{S} gd\mu_{n}\right| = \left|\int_{N} gd\mu_{n}\right| \leq 1.$$

Thus if $X = (\Sigma \bigoplus X_{1/n})_{c_0}$, X^* contains a countable total set, but no countable norming set. (The first example of this type was constructed in [3].)

PROBLEM. Let K be a compact Hausdorff space, such that $C(K)^*$ contains a countable total set. Does $C(K)^*$ contain a countable norming set?

REFERENCES

- 1. Y. Benyamini, Separable G spaces are isomorphic to C(K) spaces, Israel J. Math. 14 (1973), 287-293.
- 2. Y. Benyamini and J. Lindenstrauss, A predual of l_1 which is not isomorphic to a C(K) space, Israel J. Math. 13 (1972), 246-254.
- 3. W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated Banach spaces, Israel J. Math. 17 (1974), 219-230.
 - 4. S. Kakutani, Concrete representation of abstract M spaces, Ann. of Math. 42 (1941), 994-1024.

YALE UNIVERSITY

AND

OHIO STATE UNIVERSITY